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SIGNIFICANCE AND EXPLANATION

The problem studied is in the area of differential equations; it models

the spatial distribution of the genetic composition of a population in a

heterogeneous environment, account being taken of migration and natural

selection effects. More generally, it models a distribution in the

composition of an ecological community. A number of conditions are given

which auarantee the existence or nonexistence of a stable nonunifo-m

equilibrium distribution, which is known as a cline. Of special interest is

the case when two stable homogeneous distributions are possible; there may or

may not also exist a heterogeneous one.

\ ..- r

T -,- rilitv fnr tho wordino and views exnre-sred in the descriptivei i--,ary lir- with 4T C, an] not with the authors of this report.
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CLINES INDUCED BY VARIABLE SELECTION
AND MIGRATION

P. C. Fife and L. A. Peletier

1. Introduction.

Clines are nonuniform spatial distributions in the genetic composition of

a population in equilibrium. They have been studied a great deal by

population geneticists (see for example [7, 9, 15, 16, 19)), often within the

context of the simple class of equations

d2u
d-+ s(x)f(u) = 0 (1.1)

dx
2

in which u is a scalar variable representing some qene frequency, f a

selection pressure mechanism tending to drive the population to certain

preferred states, s a measure of the selective intensity, and the second

derivative of u a term designed to account for spatial migration.

Outside the context of population genetics, equation (1.1) has been used

in models designed to describe certain phenomena in ecology [12).

We suppose that f(0) = f(1) = 0, so that u = 0 and u = I are

solutions of (1.1). These solutions represent the situations where the gene

in question is either entirely absent or everywhere present. We shall say

that u 0 (u = 1) is favored at the location x if

s(x) r0 f(u)du < n (> 0):J0
Sponsored by the United States Army under Contract No. DAAG29-80-C-0041 and
the National Science Foundation under Grant Nos. MCS 78-04443 and MCS 78-
0215P.
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One reason for this terminolony is the fact that in the case when s is

constant, travellino waves of thy correspondinq nonlinear diffusion eauation

S+ s f(u) (1.2)

always move in a direction s- that at e,-c fiyol x, u(x,t) tends towards the

favored state.

Another reason for this tern inr-,v. ic that it is consistent with the

notion of relative fitness in porulation anenetics. In that context, the

derivation of (1.1) proceeds from a sinole-locus, two allele model (A and

a), with u the frequency of the a-allele. In the special case when the

fitnesses of the genotypes AA, Aa and aa are independent of population

-ensity and genotype-freauencies, and are denoted by 1 + s,' 1, 1 + s2

respectively (s1 , s2 E R), sf hecomes

sf(u) = ru(1 - u) ( I  + s2)U - s2 r

and it is easily verified that the state u = n is "favored" in the above

sense if and only if sl > '2" In this case, travelling waves tend to

eliminate allele a, and drive u to 0.

We define clines to he stable nonconstant solutions u(x) of (1.1). IF

ry'e domain - the hahitat - is the entire real line, we shall for

definiteness require that u(--) 0 0 and u(+-) = 1. 0n the other hand, if

' ,ounded intervzjl: (-1.1), we recrnire Neumann (uX = n)

conditions at the endpoints and iu(I) > u-1). -he notion of stability is

her= to he 'inderstiod wit) reorard to oiation (1.2). The precise definition

of stability to he ,siOd is critical, and wo shall oxplain it at the end of
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this section. The reason for including stability in the definition of a cline

stems from the fact that unstable solutions of (1.1) are not likely to reflect

anything seen in the natural world.

Past analyses of clines [3, 6-9, 15, 16, 19] have all been devoted to the

case when u = 0 is favored for large negative x and u = I is favored for

large positive x. In this paper we shall suppose that u = 0 is favored

everywhere in the habitat:

s > 0 in 2 and f0 f(u)du <

and we ask whether it is still possible for clines to exist. If s is

constant, the answer is no. For a bounded habitat this follows from [I1, and

if 2 = R it follows from results in [10] and elsewhere. However, we shall

show that provided

(i) s(x) is allowed to vary in certain ways, and

(ii) the selection mechanism is bistable, i.e.

f'(0) < 0 and f'(1) < 0

a cllnp can indeed exist. In terms of the example from population genetics,

b histahiiitv means we are in the underdominant case, i.e., si > 0 and

I~!i s2 >  0.

Arain in the nnni1]at-inn oyn-tic rontext, (1.1) is derived under the

RA',i-rinn, that t # -o"a1 ponrDuatinn dnsity iq constant in space and time,

* that '- : t -ration ratl- is r wso constant, that no drift (i.e., no

r,rforr,1 Air jr'n of rizr'iin.) i rrPsnt- in the latter, and that the
r

*1I II I I ''" ' ' ..



relative fitnesses of the genotypes are constant. These restrictions,

however, can be dropped and (1.1) replaced by a more general equation. These

qeneralizations are examined in this paper. For example in sections 6 and 7,

'-'e extend our analysis to allow for variable total density and migration rate

fbut we continue to assume, for simplicity, that no drift is present), and

find that spatial variation in the carrying capacity of the environment and in

the migration rate may also be sufficient for the existence of a cline.

The biological picture we shall have in mind is the following. The

individuals of the three qenotypes AA, Aa, aa operate under the same

migration rules: more specifically, there is an infinitesimal variance

(mobility) V(x) in the migration rate, common to all three types, and in all

cases the drift is zero. [The effects of genotype-dependent migration were

studied in [141.1 The carrying capacity k of the environment is assume to

be, to first order, independent of the population's genetic composition, and

is a given function k(x). when the relative fitnesses of the genotypes vary

in space, the selection term s(x)f(u) should be replaced by some function

hfx,ul. Under all these conditions, the appropriate generalization of (1.2)

is r5, p.FS41

t 1 (V2(x)k2(X) lu) + h(x,u) (1.3)

V(x)'- (x)

Other migration rules, such as qiven in [5, (1.20)] could he handled by

niir technique; hut the results obtained here suffice for the purpose of

1lustratinq the effects of variable miaration and carrying capacity.

We shall give various sufficient conditions for the existence of clines;

r Itypically they involve the statement that the function s, V, or k

extperiences a sufficient drop over some finite zone in the habitat. However,

-4-
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not only does the magnitude of the drop in this zone have to be large enough;

but also the gradient of the function in question has to he steep enough over

part of this zc . The function should remain relatively large over that part

of the habitat lying to the right of the zone, whereas its values to the left

are not so important. The intuitive role of this zone is that it separates

two communities, which are more or less in states u = 0 and u = 1

respectively. In the case when the function experiencing the drop is the

mobility V, the zone would clearly act as a barrier tending to isolate the

two communities, and so providing for their coexistence in different states.

Our results show that a similar variation in carrying capacity or strength of

selection can function eaually well as a barrier. Matano [13] has shown that

in higher dimensions, the shape of the habitat 2 is relevant to the

existence of clines, domains with narrow middle sections favoring their

existence through a type of barrier action.

We shall give a brief description of the results of the paper. The

function u will assume values only in the range 0 u 4 1. The following

hypotheses on f and s will be made throughout.

S: f E CM),11); f(0) = f(a) = f(l) = 0 for some

a c (0,1); f'(0) < 0, f'(1) < 0; f(u) < 0 on (0,a)

f(u) > 0 on (a,1); and r f(u)du < 0

Remark : This last inequality means (since s > 0) that the state u = n is

favored for all x.

SH s  s is piecewise continuously differentiable on S' where R or
rS ' [-1,11;

infis(x):x s n

-5
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Conditions for nonexistence in the unbounded habitat. As mentioned

before, it is well know that a (Iine cannot exist if s is constant. <ore

generally the followirn holis. Let c £ (0,1) be defined by

f(u)du

- f(u) u

Theorem 1. If ( m , then no cline exists. This condition is

sharp. Moreover, not oo v muTt (inf %)/(sup s) be large enough, but s must

be an increasing function on some interval (Theorem 2), and the variation of

s must be abrupt ennuqh:

* 1I  *
Theorem 3: Lpt s (x) C (--, ) and s (x) -s (Ex). Then there

exists an z 0 C such that if 0 < C < £0 and s(x) = s (x), no cline

exists.

Conditions for existence in the unbounded habitat. Here we insert an

extra positive parameter " into (1.1):

:!2 u
+ \ s(x)t(u) = 0 (1.4)

Let :-xC) (. e any rnncoa-ive piecowise continuously differentiable function

which vmishes for xj > C and is choen so that sup 0 1. For some

a - lot

, 4: > - - '1i' , then there -i a numher , n:: h

t iat "f n. " , 1.,) . j. '; ' .

4 (
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Of course, i beina large simply assures us that the "Iip" in s will

be low enough and abrupt enough.

Existence conditions can also he aiven for the more aeneral Pauation

2dud + h(x,u) = 02
dx

h satisfying

Hh: h is twice continuously differentiable in u and once in x;

h(x,O) = h(x,1) = 0.

Theorem 5 and Corollary 5.1 give conditions on h, in the form of

inequalities, which imply the existence of a cline. The principal require-

ments are that h(x,u) ; s(x)f(u), where Hf and HS  are satisfied, s is

sufficiently small on some interval (0,B), s ) 1 on (A,-) (where A > B),

s 1 on (B,A), R and A are sufficiently large, and A-B is sufficiently

small. The internretation is that (0,R) is a "barrier" region hetween the

two "communities" (--,n) ann (A,-), and (B,A) is a "transition" zone.

Finally, in Theorem 6, it is shown that s' > 0 implies that the cline

is strictly increasing.

Pesults for a h1ounded habitat and for variable V or k: An existence

condition analogous to Theorem 4, but for a hounded habitat, is given in

H Theorem 7. Finally, conditions for nonexistence and for existence of clines

r n for cases in which V(x) and k(x) are variable, in Theorems 8 -

13. '7- cndition ir similar to the ronitions on q in the foreaoing

r

-7-
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Iru-!ts ,th, f- ty- orosenter - rapor were conjectured to hr t r',j

v.en (personal communication an f12 ). In r 1 2 ' , the int erpretaticn

v.i i the c(,ntext of the spatia7 variation in composition of ecoloaica.

c: ts, rather than the context described here.

1I f(u)du < 0 (or the analogous
-.Ave assumed throughout that rt

' on h), so that 0 is the favorel state for all X. As rentin

- his is a major distinction from previoar treatments of rljne, v 'or,-

-'- . >v~ state was assumed to chance within the habitat. It -oes wtx "

:r.,1; t at if f du = 0, then a cline exists even in a homoceneous

ihl l;;t; Nut it is structurally unstable, since a slig-t chanue in the

-ct io:n f will destroy it. To ensure that a cline exists wher .j r

.:t that a cline continues to exist when f is nerturbed by any scaM a-r.n

iffices to have s, V, and/or k *vary in ways descrited 1-y our theorV7

o c hal'i not pursue the details. The idea is that existence conditions cay he

-si;:n which remain valid when these ftn.,i,'s are alterev s<i, ht\v but

r t i t &a ri lv.

F-rnally, let us explain the notion of - .1ility which we Sa~l use

* :h,,ut the paper. It is I-,s inp so t'hat In! St w: a7'o(cn1t i S

-ro, osition. Let { he a -tationai,.- c,*5o1'lI n - - act-tnarv

- , c, trlut ion -f (1.3) together with af propriate o la Y con, i t .i - suI

" $  and neither is an exact- solut.(Ir. or. there exists a sta-]1

.::ri i1r, solution ' of (1.3) b1etwen an .

"i

in Iroposition I'- I I I I I

.:) 5 stgt i nn ary ilol' */1~ ~ - ~ -

-''i..y-u forjr on - '~t '' '* 1 .
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N[u] being the ,<pression on the right of (1.3), whilst at each endpoint

in the interior of 2, £'( + 0) > - 0). For 2 bounded, we also

require ' 0 at its left endpoint, the opposite inequality holding on the

right. An analogous definition holds for supersolutions.

If the habitat 2 is bounded, we shall define stability in the usual

C sense. It was shown by Matano [13] that the proposition is true when

stability is interpreted this way. If the habitat is unbounded, the

proposition has only been proved for the following weaker notion of stability

[2].

Let : R + (0,1) be a solution of (1.1), and let T be a family of

functions (defined below) with prescribed behavior for large 'xl.

Definition. ; is said to be stable if, for every 1, 2 T with

1 < 2  there exist elements 1' 12 c T with 2 2 such that

if I u0  2, then the solution u(t;u 0 ) of (1.1) which satisfies

u(0;u 0 ) = u0  has the property

I lim inf u(t,u 0 ) < lim sup u(t,u 0 2

Here all the inequalities are understood in the pointwise sense.

To complete our definition of stability, we need only say which functicri

belong to the family T.

Definition: A function y C (R;[0,1I) is said to belona to T jf

(i) ;(x) is an exact solution of (1.3) for larme IxI, anl

(ii) (- ) = n, (0 ) = 1.

-o



Within our leve] of oiaitit will not necessarily follow that the

stable solution we ob--tain is asyo-ptotically stable, in that small

perturbations of it return to it as t + . In fact, in exceptional cases

there may be mnany clines, anrl all we say is that when one i, perturbed by a

small amount, the subseqoen*- .volution of u(x,t) never leaves a neighborhood

of the dline that was Perturbed. A diifferent cline in that same neighborhood

ma, be approached. We are quaranteed, however, that u(x,t) remains

between :and I-for all. time, anOd so despite the possibility of many

successive perturbaons througih the course of time, it will never evolve to a

spatially constant distribution.

Sinres can also be tuidfrom the point of view of discrete, rather

"-an- cnnt~nuous, selection-mirartion models. A result of Karlin and MacGregor

'11', fr-r exa:'ple, implies that .,hen the migration rate between colonies is

ina7. r each colon', i;, olation has two stable equilibrium states, then

'~~v ~ 'Xist. T~ii is concc'ptually in accord with oi'r results, which

say', v.ery rou aily, t:i'at rertain sritial heterogeneities favor the occurence of

clineF. Colonies with nl interch- anqe, when conceived in a Cleographical.

settino, fc-m an )nhr tl htproqenervi! model.

The a-uth ors be'-e:it- o (reat ly from diiscussions with T. Naqylaki and

~.Lev'.n.



2. Nonexistence Theorems.

We consider the problem

u" + Xs(x)f(u) 0 x £ R, X > 0,
(2) (2.1)

u(--) = 0, u(+-) 1

where f and s satisfy the hypotheses Hf and Hs  listed in the

Intro(duction.

It is well known that if s I constant, Problem I has no solution in

:I
view of the fact that , f(u)du 1 0. Thus it is the variation of s which

may qive rise to the occurence of clines. In the following theorem we give a

lower honnd for the variation of s which is necessary to sustain a cline.

we d-fine

S o = inf sx) , s2 = sup s(x)

R R

vd wo irsume that s > 0.

-':,oro 1. Let

sl f(u)du
1 > a (2.2)

2 r f(u)du

° . I has no solntin.

r Sjsupnnsp, to the -ontrary, that Problem I has a solution .

) ,: x) > f for larce neqative values of x. Set

x 4,ei x ,, ) > on x

, • ' )r M < ", it) which raso

-11-
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;'(x 0 ) = 0, "(x0  < 0, ¢(x ) > a

Multiplying (2.1) by u' and integratinq over (- ,x ) we obtain

f 0 s(x('))f(c)d = 0 , (2.3)

where x(p) denotes the inverse function of .P(x). Since ;' > 0 on

(--,x ) this function is well defined. Since s(xO) c (a,1) (2.3) implies

that

fl s(())f( :)d, ;0 0

Thus, using the bounds for s we obtain

sI f t(;)d; + s2 1a f( )d; ) 0

or

J fl (2.4)
s2 _ra

Jo

which contradicts our assumption about Sl/S2*

Theorem I is optimal in the following sense: If positive numbers s

and s2 are qiven which violate (2.2), there exists a function

s : R IsI ,s 2  such that Problem I has a solution. We shall riemonstrat-,

this in the following proposition: (see also (171).

-12-



Proposition 1. Let s R + + be defined by

s(x) {:; x < 0

2  
x 0

where 0 < sI < s2  and S1/S2  satisfies (2.4). Then Problem I has a

solution.

Proof. We construct a supersolution u and a subsolution u such that

u 1 u. Then the existence of a solution ; such that u < 4 u is ensured

by the standard theory [18).

We begin with the construction of a monotone subsolution. Let V1  be

the solution of the problem

U" + s I f(u) = 0 -0 < x < 0

(2.5)
u(- 0, u(0) = a

and let V2  be the monotone solution of the problem

(u" + s2 f(u) = 0 0 < x <

u(0) 
= a, u(-) = 1

Both solutions exist, and can be constructed implicitly by quadrature. In

fact, multiplying (2.5) by u' and integrating, we obtain

I!1 72 ru

2u' 2 + sl r f(s)ds = 0

which cives u' in terms of u for u E (O,a], since the inteqral is

negative in that range. Define

-13-



V (x) x<0

u~)= K,
- v2)(x) x > 0

Then u will be a SlIbsolUtion of Problem I if

u'(O ) % u'( ) + (2.7)

it follows from (2.5) that

ta

NVI (0)12 = S 0f(v)dv

and from (2.6) that

2(0) 2= +s2 a f(v)dv

Thus, by (2.4)

2

which establishes (2.7).

Frr a sunersolution we take, for some F £ R, the function

2)

- W(X) x <

whpre w If th r ,'II()Tlof the nrohlpm

w" + f(w) x <

- , w4- ) = 1

-14-
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This problem has a unique monotone solution (use the method outlined above

and Hf). By choosing C < 0, we make u a supersolution of Problem I, and

bv choosing (-r) larme enough we can ensure that u > u. This completes the

proof.

In the next theorem we limit the class of functions s for which we can

expect clines even further.

Theorem 2. Let s be a nonincreasing function of x. Then Problem I has no

solution.

Proof. Suppose again that Problem I has a solution ,, and define x0  as in

the proof of Theorem 1. Then we obtain (2.3) which we now write as

-a s ( x ( ,; ) ) f '; ) d ,: a 0 s ( x ( :) ) f ( , ) d , ( 2 . 8 )
0a

with 0  ;(x 0 ). Since is monotone on (-c,x ) and (xo ) > a, there

exists a unique point 1 c ,--,x 0 ) such that ;(,) = a. Now utilizing the

monotonicity of s we deduce from (2.8) that

-s( ) 'a f( d':< s n f da

ar hence

(1 .~ f f ;d; 0

-i-ii,7 ts );ir aseumnf ion~r ahniijt- t-hp !, i n f

.1?

*1



Thus for there to exist a cline, it is necessary that s be increasina

at some point of the domain. In fact, as we shall see as a corollary of the

following more general nonexistence theorem, this is still not enough: it

needs to increase sufficiently fast.

To prove this we consider the problem

u" + h(ex,u) = 0
(II)\

u(--) = 0, u(W) = 1

where we make the followinq assumptions about h.

Al. h F C (R x (0,11), h(x, o) £ C 2([0,))

A2. 1hx I 1, hlb I , h I uu M2  uniformly on R x [0,1).

A3. h(x,0) = h(x,a(x)) = h(x,l) = 0 for all x £ R, a c C(R),

0 < a(x) < 1 for all x e R; h(x,.) < 0 on (0,a(x)) and

h(x,') > 0 on (a(x),l).

A4. h (x,0) -a < 0, h (x,l) < -a < 0 for all x R.
u u

A5. rl h(x,u)du 4 -3p < 0 for all x c R.

Note that Problem II is ecuivalent with the problem

U" + h(x,u) = 0 X = (/c2

(II') (2.9)

u(--) = 0, u(-) 1

Theorem 3. Let h satisfy the assumptions Al-5. Then there exists an

> > 0 (A > 0) such that if E 1 c ) A ) Problem (II) (I1') has no

,nlution.

Proof. Suppose ;(x,X) is a solution of Problem T', and let he t e

smallest root of the equation

*1
-iF



(x,X) = a(x)

In view of the boundary conditions, and the assumptions on a, such a root

will always exist. Note that C will depend on X.

Before we proceed further, we introduce some notation. Choose >

such that

h(x,u)-du -2p for all x E R

and define

R() = {(x,u) IX- < , < u < 1

To begin with we shall show that there exists a A > 0 such that il

X > X1, the graph of ; can only enter R through the bottom, i.e.

;(x,X) < 6 on (-o, -p] (2.1n

IISuppose to the contrary that enters P at a point ( -P,Ul} where

u £ (6,1). Then, because " > 0 on

and hence

- • I -h ( x,; , 1)7)dx < (1- )I( \) (2.11)

° -17-



Since

h( x, (x,A ) ) I . Ihx(x,, \(x))I + Ih (x, (x,.\))j I '(x,A)
dxx u

4 1 + M (1-5 )/p

the inequality (2.11) implies that at each x C

h(x,;(x,A)) 0 as X +

and in particular

h( -p, ¢( -p,X)) + 0 and X +

Thus, for X large enough,

u = (7-p,A) 5

and we obtain a contradiction.

We shall now show that there exists a X2 > 0 such that if A ) A2, the

graph of can nrly leave R through the top. This contradicts the

boundary condition at +- and thereby proves the theorem.

We multiply (2.9) by 2€' and integrate over - This yields

2 rra h

2 h (x (,;)* , 3 > 2X,



• 'hrt x( is the inverse of (x). Let X > . Then x( ) - p on

K. ,a' and it follows that

2 > ) a( ) - 2 Xpa( )sun lhb up x ) -

> 2X ra( h-2A0a(A

Fr x , we now aet, as lone as '(x) > 0

_a ^(xh~(4) )£ ,(× 2 = ., 2 2X

> a )h -2Xpa - 2X h(, - 2Xp(1-e)

2X{ h( ,d -

2Xp

2
Thius, choosing X 2 1 /2p,2, we achieve that

'x)> 1 x > r

anf! hence, that the araph of leaves F throuqh the top.

I r' . Theorem 3 may he reqardei as a nartial convorse to Theorem 6.1 of

" ,l. whic' the existence of a transition layer solution is established for

K 11" + h x,u) 0 x K

j '.4



in which h(x,O) = h(x,1) = 0, h (x,O) < -K h (x,l) < -K for some K > 0
u u

and in which it is assumed that for some x0 E R,

fl h(x0 ,u)du = 0

In our terminology, a transition layer solution is a special type of cline,

one on which the change is primarily concentrated in a small interval. It is

the last condition which is violated here, and indeed we find that no cline

exists for small enough e.

We now return to our original problem. Consider

(u" + s(sx)f(u) = 0
() ku(--) = 0, u(-) = 1

where s and f satisfy, respectively, Hs and Hf. In addition we assume

I
that s E C (R), and

m, x E R

Corollary 2. There exists an E > 0 such that if C < £ , Problem I b s

no solution.

p. '* -2'o-
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3. Existence Theorems.

Having established a number of necessary conditions on s for there to

exist a cline, .,- shall now give two sets of sufficient conditions.

In the first theorem, we describe the effect of a local:zed inhomogeneity

in an otherwise uniform habitat. Thus, we assume that s is given by

S(X,; ) {1 pg~, )-1
= (1 + 19(xW) u > 0, C > 0 , (3.1)

where e e C (R) has the following properties:

H 1 6(x,C) = 0 for lxi >

H 2 e(x,c) ) 0 for jxl < (£0)

H 3 Max{@(x) : lx! < 1 = 1

Thus, 21 denotes the width of the inhomogeneity, and i is a measure of its

"strength".

Theorem 4. Let f satisfy Hf and let s be of the form (3.1) in which

satisfies the assumptions H0. Then, if

2a 2
>~) {' f(r)drl 3 (.2)

2 a

* *

there exists a number W such that if 0 > i Problem I has a solution.

ii depends on X and and tends to infinity if either X + or

II

N1
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Remark: We have normalized thP function s(X) so that its maximum is equal

to one. This can be done by prcrerly scalino the variable x. By (3.1), we

are assuminq that s is identically one for IxI > hut experiences a drop

in the center zone jxl < ,. Tt will be clear, however, that the proof works

as well if s is any other positive constant for x < - . Thus, let X(x)

be a smooth monotone function with X(x) -- > 0 for x < - and X(x) E 1

for x > r. Multiply the function on the right of (3.1) by X(x) and use the

resulting expression for s. Then Theorem 4 and its proof are still valid.

Proof of Theorem. We construct a sub- and a supersolution. The subsolution

v we are going to construct will consist of three pieces: "'1, v2 , and v3.

For v3 we take the solution of (2.1) on ( which satisfies the boundary I
conditions v 3 ) = a and v 3  1. This solution clearly exists, and it

is unique. For v1  we choose v1 (x) = on (--,p], where r - is

still to be determined. Observe that

{v3 ' 2"  f(r)r3r

Let c(u) ) -" -n "),a!. Therl we chooso fr,- * the solution of tho

nrnhle7

,I : s( , .. >, on (p, )
o ( ,(3.3)

' ,') - a, u' ') -- v '(K)

Then v2 o fiihnc]iiti',n V (2.11 on (p,,-. Wo qhall show that if (3.2) is

". ;atis [ ai or,, ;, Dr r enour'!, v-2 > r) on rr,) and v 2 (p) =

r

I1
- "- !



Clearly, since u" > 0 by (3.3) a necessary condition is

v '( > a/( ) ,

which implies (3.2). moreover, integrating (3.3) we find

-r dx defu -) u'(x) ) = (3.4)-1 + L' (x, )

Thus integratina once aqain, we obtain

a v'( ) - R)I=p

whence p - if

a£ V' s) - -
3

This cn clearly he achieved by choosing L u for some large It is
.

clesr "o',,,over fro- (".4) that as A * o or 2 , - as well.

Tht- ioersolut i n w is constructed out of two pieces w I and w 2 .

Her- is thP so!ition of (2.1) on (-=,-<), which satisfies the boundary

conditions 1 -  = , 1(-) 1 . In view of the integral condition on f

thi- £c!utior exists, an! is uniaup. 'or w2  we choose w2 (x) = 1 on
2-[ ,2x.

constructior vrx) < w(x) on R. Hence there exists a solution u

of Pr"' T cturh thiqa '. < u w.

r
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To construct other sufficient conditions for the existence of a stable

cline, we envisage a pair of piecewise continuous functions H(u) and H(u)

satisfying

H(O) = H(1) = 0 , (3.5)

fb H(u)du < 0 for all b c (0,1] , (3.6a)

H(u)du > 0 for all n c [0,1) , (3.6h)
'b -

toqether with solutions U(x), T(x) of

V" + H(U) = 0, U( ) = 1 , (3.7)

U" + H (T) : 0, TJ(-c) 0 (3.8)

Representing the solutions in the usual way, one can see that 1V must vanish

at a finite value x, which may be chosen arbitrarily, and U 1 at a

finite value x. We consider U to be defined only on [x,-) and U only

on (--,x].

Theorem 5. Let H, H, T_, U be as above, with '_(x) ( U(x) where they"

are both defined. Assume h(x,u) satisfies Rh and

h(xt(x)) > H(1(7 )) for U c [n,11 , (3.a)

h(x,TJ(x)) H(I(x)), for U C (0, ] (1.!-

;474



Then there exi-ts a stable sclution of Prc1b'e (I) with r 1.

Proof: Thc, function u(x) = Maxji,U'(x)j is a suh.soluti .r, a7d

u(x) = Mint1,! a supersolution. The conclusion follows immediately.

The followina coro-larv treats the c-ase when " can be compared, in a

certain way, with functions of the form s(x)f(u), where s and f

satisfy H and H,, t 'ncl n !v. .e picture the habitat ap einc -,ivii-,.

into four regions, the first tw,- hino ,i) thp interval (- ,r), where the

population exists in a r it-, n ur u 0; and (i:_) the interval (A,- for

some A " 0, where u is near 1. The interval (0,A) between these tw,'o

ronulation states is divide,:] into (iii) a "barrier" recTion (f,E), whereir

the nelection strenath is rcnui'ed to be small enough, and (iv) a "transition"

interval (B,A) of lernith T = A-B, which is simply assumed to be short

enouch. In region (ii), the selection strenath must be large enouoh but no

strona reauirements are imposeA upon it in (i) and (iv).

The critical ratio

rlf(u)du

, =(3.10)

Oaf(u)du

will play a crucial role. Note that 0 < Y < 1.

Corollarv 5.1. Let < . Suppose h(x,u) s(x)f(ul where s and

f satisfy ". and Hf, respectively, and in addition for some nonneaat:

nib Re , T, and o,

s(x1  *",, X , L on

F2. !x1-,,

s(x) 1, x . (P,P+T)

XT



Also for some neoative nurhlr we assuop that

h(x~u) s(x)f(x) ,x -X

where s and also s~tisfy a! n3 !if- < s~ s(X) s for x < X

a nd

* (3. 12)

-y beiriq def inel by ( 3 .1(, with - rrlared f: . '~ih-n there are numbers

B (~olT*(-,o) such that if

p > X-
1 2 B1* , ' /2,*r F 4-1 ~ 112 + T*) , (3.13)

there exists a sta'hle sol utior of Problemr (IT'I

Remark . Forruilas- for ihi- F ;ind T will he 'iiven in Proposition

5.1. It rlsearly follow fro-- the. construction be)(low that

It a"a h '-

7'rr,' 'f > <'- - rfq' ',r r'o ase 1; th-

uonra. ~ ~ *-~,i Y' r''aioq. ,. -1/2



F-i som'e w t:fl,a/21 , l~tLt

y u), u t_ (.va-W,)

'1c

'~qa fail ~ flu > I"! ni.' y < y. Therefore there

exi val-ie w ( ,a,' 2 ) for which all'~ 0 1s well I. For w =w

e t "x( be) the solutirs of (3.7) satisfvino U(O) w A U) (,P and3

(9*, + 'P ) hotb initer ,als on Lw-ic.h- U' ( a %v~ and (a - w1, a),

rosrect i ,-V. Then (3.11) for F P*, 7 T* im~nlipe- (3.qa).

f f(u) (0-I)

F'irninq H(u)

we' t-a (3.12) j-ir'rsje (3I.Aa); an(! if iq theo qc'It;or of (3.P)

a t X)t1, (3. 0 b)) wi'.1 hI? ratisfie1.

7 the m - i i d on f nw,; T'"- P ho remn 5. Now lpt

1
-ea.''r''~r stis''nq(3.11) ( q till mial to 1). Then

-X*~* ,'-etYt (3.11) -,till iola, with the

.. **~* r" 1-cc ift t(7 th rinht by)" the amounlt X0 . This

~.1.I', s i*' I~*,r'r'rf cf corrllarv ').l.

~Cnli~wir,, oynrorisqions yieldl

-... n7-'rv 1



-1I-
1/2

B (a 2w 2)(F(,w )0  ) + w 1FMa,1)

-1

T = w1 (F(a,1))

,reF~~,~ i(2 f'If(,ldu)1 1/2

Proof: Let c < 0 be such that I_(c) = 0. Multiply (3.7) by U' a n

irteirate from c to 0, to obtain

1/2
U'(o) > F(0,w )a

For x (0,B), U" o 0, so U(x) ) U'(0), and

1/2
U(x) > w1 + x F(0,w1 )o

5;ettino x = B, U(B*) = a - w1 , we obtain

. 1/2 1-

B < (a - 2w )(F( ,w ) / (3.14)

workinq from the other end, we find U'(B - T ) = F(a,l), and f-r

x , .l 4-.

U' (B + T ) M(B + T - x) 1 U' (x) 4 U'(P + T

I
'* 

* T*

ghprr -' inf f. IntegratinQ from R to P + T and using the facts

a T(P a a 1- w (P + T = a, we get

r-_-, a ,

iI



J2

*~,) 1 .2

F(a, 1 )T - MT 4 w F(a, T 1)T21

hence

-1 * -12Mw 1  1/2]

w F(a,1) ( T 4 M- F(a,1) [1 - ( 2)

(F(a,1))
2

4 2w (F(a,I))-I (3.15)

It is seen from (3.14) and (3.15) that the values of B and T given in the

proposition satisfy (3.13).

U

r
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4. Properties o solutions.

We begin with a monotonicity theorem.

Theorem 6. Let ; he a solution of Problem I in which s and f

satisfy, respectively, Hs an4 Hifo Then if s is nondecreasing, € is

strictly increasinq.

Proof. Without loss of aenerality we may set x = 1. Let

X, = infix I R : :' > 0 on (x,-)}

and let us assume that x, > --. Set ,2 = ;(x2 )" Since ':'(x 2 ) = 0,

;"(x ) 0, and u - a is a solution of equation (2.1), it follows that

12 E (0,at and ;"(x 2 ) > 0. Let

x I = infix < x 2 ' < 0 on (x,x 2)}

In view of the boundary condition at x = - , > - =. Set ;=

Then :1 L (a,1). Denote by x1 (,) the inverse of ,(x) on (x1 ,x2 ) and by

x 2r ) thp inv rs p of 7(x) on (x , ").

If we multitlv (2.1) 1v , ' and intearate over (x 1x 2 ) we obtain

1 s(x 1 () )f( )d.'= 0 , (4.1)

and if we interstate ovor ,X* 2

s(x f) f(,.-),:-= 0 (4.2)

- 2

1 _ f2



Eauation (4.1) viel-.s

s (x1d=a s(x ( ))If( )$dr

and hence, by the monotonicity of s

raI
I( fa J 4 d,; 4 s (E) f f( )d

2

whence is the (unique) zero of the equation

;:(x) - a = 0 (4.3)

on (xTx 2 ). Thus, since s > 0

ra If( )d¢ fa f( )dq (4.4)

2

Similarly, (4.2) yields

-a f,

2 2 a 2

a r.-I, 'lienco

a~ra

a f(¢ I.4 s (r) a f( da

2

- r, ir- ths, (linimim ) z,.r r) of (4.3) on x 2, ). Thus

- I2



f€2 or')Id; f fa{(,P) d¢ . (4.5)

O2 a

Toqether (4.4) and (4.5) imply

which would mean that p 1 > 1. This is impossible.

Next, we turn to the question of uniqueness. We shall show by means of

the example discussed in Problem 1, that we generally cannot expect a unique

solution (see also [17)).

+
Proposition 2. Let X 1 and s R + R be defined by

(S, x<O0
s(x) s  x0

whence 0 < sl < s2 . Then

(i) if s1/s2 = Y' Problem I has precisely one solution

(ii) if sl/S2 < Y, Problem I has precisely two solutions.

Proof. Let v(x,a) be the solution of equation (2.1) on (--,D) which

satisfies the boundary conditions v(--,a) = 0, v(0,a) = a. Then for each

[0,11, v(*,a) is well defined and

{v'(Oa)}2  -2s, fO f(r)dr, 0 < a < 1

Similarly, let w(x,a) be the solution of equation (2.1) which satisfies the

boundary conditions v(0,u) = a, v(-,a) = 1. This solution is well defined

fnr a < a 1, whence a is determined hy f(r)dr = 0, and

-32-



2 1(w, (o,cz)1 2s j.f(r)dr ct < ai(
2 c

Clearly the co,,,osite function

{v x<O

w x > 0

is a solution of Problem I if

v'(O,a) w'(O,a). a < a 1

It is readily seen that this equation has one root (a = a) if Sl/S2 = ,

and two roots ci 1 ,a 2 (ci < ci 1 < a < a 2 < 1) Of sl/s2 < Y.

~1
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5. Bounded domains.

In this section we ronsider the problem

I u" + Xs(x)f(u) = 0 -1 < x < 1
(III)

. u' (-1) u'(+1) = 0

Clearly this problem has three trivial solutions ul = 0, u2  a and u3 = 1.

U1  and u3 are stable and u2 is unstable. We shall inquire into the

existence of stable nontrivial solutions.

To begin with we shall ueneralize Theorem 4. However, before we can

state it we need to introduce some notation. Consider the problem

(u" + f(u) 0

u(0) = a, u'(1) = 0

This problem has a strictly increasing solution u(x,X) for X > X0 > 0. Set

S 1 f(r)dr X > X
0

Clearly 'j(W -_ 0 as A X and w( ) = f(r)dr

Next, consider the prohlem

u" + kf(u) = 0 (5.1)

u(0) = 1, u'M(1) 0 (5.2)

In view of t-e integral condition on f there exists a X > 0 such that if
i*

t'his prohbn haf; a $tricill !"crasinry solution (which is not

unirue ).

r -



Theorem 7. Let f satisfy H, and let s be of the form (3.1) in

which : c (0,1) and S satisfies assumptions I@.

Suppose \ an, satisfy the following inepualities

X - )2) > - a2  (5.3)
8

I max{x 0*} (5.4)

Then there exists a constant ,j such that if W > W , Prrblem III has a

s']ut ion. if X , then u .

Prnof. We rrocee , as in the proof of Theorem 4 constructing a sub-

itcti-n V an! a sunerqn1ution w such that v 4 w.

Or %'3 we now take the solutin of (2.1) on (1,1) which satisfies the

brun<lar, conditions v3() = a and v3 '(l) 0. This solution exists in view

(- 'E.4) and it can be seen by a scalina arourment that

- (c)2 = 2)(X(1_ )2 ) (5.5)

-'ir. e rroof -f Th'eorem 4 we rerTuirp that

3 'U) > a/2 ,

I
S a 2  is the sae as in the proof

r



The supersolution w consists again of two pieces w, anr3 w2.

Again, w2 
= I on [-C,1] but w, is now the solution of equation (2.1) on

(-1,-) which satisfies the boundary conditions wil(-l) = 0 and

1(-c) = 1. It is a simple matter to transform this problem to (5.1),

(5.2). By a appropriate scaling we find that the function w, exists if t-

inequality (5.4) is satisfied.

In view of the construction v < w on [-1,1:. This completes the

proof.

U
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6. Variable migration and/or carrying capacity.

We now consider the problem

tk (x)V2 (x)u)' + 2 k2 (x)V(x)f(u) 0, x E R, > 0

(IV) (6.1)

u(--) = 0, u(-) = 1

where f satisfies Hf, k and V are in CI (-1 ,), and k(x) and V(x)

have positive lower bounds. As we shall see, many of the resu!'s about

Problem IV can be deduced from the results obtained about Problem I.

Let

e r dr

y T(x) -ef 0 2( 2

0k 2(r)V 2Cr)

-1
Clearly T maps R onto R and its inverse T is well defined.

Introducting y as the independent variable into (6.1), we obtain

U" + Xs(y)f(u) = 0, y E R

where the primes now denote differentiation with respect to y, and

s(y) 2k4 (T-1 (y))V 3 (T-1 (y)) •(6.2

Let

* 4 3 * 4 3
S= inf k (x)V (x) an,I s2  sup k (x)' (x)

R R

rThen the followinci result is immediate from Theorem 2:

-37-
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Theorem R. Let

f(u)du
a

2 - f(u) du

Then Problem IV has no solution.

It is also obvious from Proposition 1 that Theorem 8 is optimal. Next,

we observe that for any x1, x2 £ R.

k (x )V (x 1 (x k 2 )V 3 x2 y1 y2
14X ) 3

I ) -4(2 V(2 )  s(y 1 ) - s(y 2 )

where y, = T(x ) (i 1,2). Thus if k4 (x)V3 (x) is nonincreasing, so is1 1

s. Whence by Theorem 2, we have proved the followina.

Theorem 9. Let k4 (x)V3 (x) be a nonincreasing function of x. Then

Problem IV has no solution.

Finally, we shall show that like s, k4V3 has to increase somewhere

sufficiently fast for there to exist a solution. Consider the problem

K 2, 2 2
E [ (x)V (-x)u']' + 2k2 (x)V(Cx)f(u) = 0

(IV
u = 0, u(-) 1

Then writing x' = c:x, we can reduce this problem to Problem IV with

2
X = 1/C , and hence to Problem I with y = T(x'), and s defined by

(6.2). Theorem 3 now yie!ls the desired result.

Theorem In. There exjt an r > n such that if C 4 C*, Problem

IV has no snl'ltinn.

"ext, wp tiirn to (''):,ion of existence. Tt is here that the results

for ProbI&- 1V leo" ',' nwhat different, and in fact stronqer.

rA



To hecin with, we introduce the two-parameter family -f functions

v × ,: ) (1 uO~,X)-1
= (xx , Uj > 0, > 0 , (6.3)

where C C(R) is as in section 3.

Theorem 11v. Let- f satisfy Hf, and let V be of the form (6.3) in

which . satisfies assumptions H 0 * Let k c C1 (R) satisfy 0 < k(x) < 1,

and! k(x) 1 1 for Ixl <. Then for each X > 0, > 0, there exists a

> 0 such that if > , Problem IV possesses a cline.

Theorem 11k . In the hyootheses of Theorem 11V and in (6.3), replace the

-'hr r, V by k and k by V. Then under the new hypotheses, Problem IV

ponsesses a cline.

Proof. We aive the proof for Theorem 11V only, as that for Theorem 11

isi the same. Throuqhout, we shall keep F fixed, and we shall write

V = V(x,A and -(x). Define

(.0)____2r dr - + jj r' 6(r)dr
* '0 2 (r)V2(r, ) 0 V(r,w) dr

dr ,0 dr + 0
-v(r,j) = +  f- 0(r)dr

k"2(r) 2 (r,;j) V r

as

- e rroof of Tveorpm 4, we construct a subsolution v which

.. f thro n1o-'2: 71, V.), and v3 . Thp last piece, v 3 , is the

w I wr~ revlaced by

* - ") 1 2 t.1 -1
r - ,1 f(r)dr) , (';.4)1 1 2 "a



where n (I ). Then for p ) 1'

v3(n > a/(l + + n

Next, we choose for v2  the solution of the problem

u" = XS(y, I)M (Y < n+)

u(n+ ) = a, u'(n + )  v v3'(n+)

Then there exists a 2 > 0 such that if > 2

p = inf{y < n : V2 > 0 on (yl +} > n - (n+ + n)
21

We now define v1 (Y) - 0 for -w < y < p. The composite function v is the

desired subsolution.

For the supersolution w, we can take the same function as in the proof

of Theorem 4, with - replaced by -n (t).
*

Thus if P ) * = max{ 1 1, 2 }, there exists a subsolution v and a

supersolution w such that v < w on R. This implies the existence of a

stable cline.

Remarks. 1. In the case k = 1, it follows from Theorem P that the

parameter w in Theorem 11v must satisfy

S 1
3,s, (I+uj)

anel hence 1/ ) (/) /- 1.
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'. It is clear from (6.4) that if A + 0, then w1 + and hence

Next, we c: ..sider (6.1) on a bounded domain:

((k2(x)V2(x)u')' + Xk2(x)V(x)f(u) _ 0, -1 < x < 1

Su'(-1) = 0, u'(+I) = 0

Theorem 12. Let f satisfy Hf and let V be of the form (6.3) with

0 < < 1 in which 0 satisfies assumptions H . Let k c C I(R) satisfy

0 < k(x) c 1, and k(x) - 1 for jxf ) . Then provided

2A(1- ) > max{XoA I

there exists a p > 0 such that if p > u • Problem V has a cline.

Recall that X and X were defined in section 5.

Proof. Following the proof of Theorem 11, we transform equation (6.1)

on (-1.1) to equation (2.1) on the interval I - I 1 U 12 U 131 where

I, = (-n - (-c), - ), 12 = (-n nl, 13 = (n ,n + (1-i))

On I, and 13, we choose the same super, resp subsolution as in the proof

of Theorem 7, and on 12 we choose them as in the proof of Theorem 11.

I
-4 1-
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7. Clines on a b-ounded habitat TI.

In this section we prove the existence of clines in bounded habitats by a

method which is different from the one used in the previous sections. There

our main tool was the maximum principle; here it is a variational argument due

to Matano £131. He used it to prove that the problem

Au + f(u) = 0 in Q

a
n= 0 on
3n

where Q is a bounded domain in RN(N > 1) with smooth boundary 3P, and

3/3n is the outward normal derivation on a l, could have clines if Q

consisted of subdomains K which were connected by sufficiently narrow
1

passages. The idea was that in this manner, the passages offered an ob-

struction to the migration of the individuals between the subdomains, thus

allowing them to maintain different states.

The problem considered in section 6 is analogous to the one considered by

Matano: the ohstruction now being caused by a diminished mobility V or

carrying capacity k.

,e consiler the aeneral nrohlem

(Dfx)u')' + Xs(x)f(u) = 0 x E : = (-1,1)
S(VI) (7.1)

U' - , u'(+l) 0

and we assurne that the function f satisfies, in addition to the hypotheses

: the normalixation:

¢ :- )¢(u (11f-a) P  for 0 < u 4 1 •
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A'out D and s we make the assumptions:
1+v -

Al. Es F 7 (71) for some v E (0,1]

A,. 0 < min{D(x) : x £ 1 and D(x) < 1 on 0

0 % min'ls(x) x c 0) and s(x) < 1 on ,

A3. r(x) = 1 and s(x) 1 on 2 1 0 2

where (-l -,) and 12 = (,I) for some E (0,1). Still following
2

Matann, we jefine

2E: C I  (;-a)dx < 0, f (4-a)dx > 0}

an we introduce the functional J : H'() + R:

J(4) = r[r D(x){4'(x)}2 
- Xs(x)F(C))]dx

where

F( ) = f(r)dra

Recall that

- a _ F(1)

Joraf(n)d

LLP-a. Lt f satisfy the hypotheses Hf and Hf*, and let D and

.,: : .fy' the assumotins Al - 3. Suppose there exists a function

.T' such that

-4--



2J(w) < AF(0){(1- )min(1,(I 2 ) - 2

Then Problem VI has a stable solution in the set R[-,+]. The proof of this

result is nearly identical to that of Theorem 6.2 in [13], whence we omit it.

To obtain explicit conditions on E, A, D and s, which ensure that

(7.2) is satisfied, we consider the function

0 -1 4 x -

w(x) ( < x <

2 
1

We find that J(w) satisfies (7.2) if , and D satisfy the inequality

1 f IT
- f D(x)dx 4 4XEF(O)[(1- )min( 2; 1) - 1 + Y - (+'Y)] . (7.3)

Thus we have proved the following existence theorem.

Theorem 13. Let f satisfy hypotheses Hf and Hf*, and D and s

assumptions Al - 3. Then, if X, E and D satisfy the inequality (7.3),

Problem VI has a cline.

Remarks. 1. Note that beyond the assumptins Al - 3, no conditions on

s are required.

2. For the equation discussed in section 6, the condition for the

existence of a cline becomes an upper bound for the integral

V2 (x)k2 (x)dx

which demonstrates again that in this context, the roles of V and k are

interchangeable.
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I 

I

EZample. Let y = 1, and 1/4. Then (7.3) becomes

Dl/4 . , 1 3

r114 _/4DX x < F(O)R(X) 0 < X < 2

-- 1/4 4 2

2
whence = (47r/3) and

f X for 0 < X 0

RM Ik - X for X < X <

I
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